The Magic Encyclopedia ™ DataBase

Pan n-agonal hypercubes order 4
(by Aale de Winkel)

The Pan n-agonal Transform allows the construction of orders 4k pan n-agonal hypercubes here an assorted listing of these kind of object for order 4 through the various dimensions

pan diagonal squares order 4
2H4 {complete compact pandiagonal magic}
Pan(2N4)

01 15 04 14
12 06 09 07
13 03 16 02
08 10 05 11
Pan(2N22N2)

01 15 06 12
14 04 09 07
11 05 16 02
08 10 03 13
Pan(2N22N2t)

01 14 07 12
15 04 09 06
10 05 16 03
08 11 02 13


The following cubes where generated by program and are all in the analitic number range.

pan triagonal cubes order 4
3H4 {complete compact pantriagonal magic}
Pan(3N4)
00 62 03 61
59 05 56 06
12 50 15 49
55 09 52 10
47 17 44 18
20 42 23 41
35 29 32 30
24 38 27 37
48 14 51 13
11 53 08 54
60 02 63 01
07 57 04 58
31 33 28 34
36 26 39 25
19 45 16 46
40 22 43 21
Pan(3N2 3N2)
00 62 09 55
61 03 52 10
18 44 27 37
47 17 38 24
59 05 50 12
06 56 15 49
41 23 32 30
20 42 29 35
36 26 45 19
25 39 16 46
54 08 63 01
11 53 02 60
31 33 22 40
34 28 43 21
13 51 04 58
48 14 57 07
Pan(3N2 3N2^[0,2,1])
00 59 12 55
61 06 49 10
18 41 30 37
47 20 35 24
62 05 50 09
03 56 15 52
44 23 32 27
17 42 29 38
33 26 45 22
28 39 16 43
51 08 63 04
14 53 02 57
31 36 19 40
34 25 46 21
13 54 01 58
48 11 60 07
Pan(3N2 3N2^[1,0,2])
00 61 10 55
62 03 52 09
17 44 27 38
47 18 37 24
59 06 49 12
05 56 15 50
42 23 32 29
20 41 30 35
36 25 46 19
26 39 16 45
53 08 63 02
11 54 01 60
31 34 21 40
33 28 43 22
14 51 04 57
48 13 58 07
Pan(3N2 3N2^[1,2,0])
00 61 10 55
59 06 49 12
20 41 30 35
47 18 37 24
62 03 52 09
05 56 15 50
42 23 32 29
17 44 27 38
33 28 43 22
26 39 16 45
53 08 63 02
14 51 04 57
31 34 21 40
36 25 46 19
11 54 01 60
48 13 58 07
Pan(3N2 3N2^[2,0,1])
00 59 12 55
62 05 50 09
17 42 29 38
47 20 35 24
61 06 49 10
03 56 15 52
44 23 32 27
18 41 30 37
34 25 46 21
28 39 16 43
51 08 63 04
13 54 01 58
31 36 19 40
33 26 45 22
14 53 02 57
48 11 60 07
Pan(3N2 3N2^[2,1,0])
00 62 09 55
59 05 50 12
20 42 29 35
47 17 38 24
61 03 52 10
06 56 15 49
41 23 32 30
18 44 27 37
34 28 43 21
25 39 16 46
54 08 63 01
13 51 04 58
31 33 22 40
36 26 45 19
11 53 02 60
48 14 57 07