| half pan bimagic panmagic squares order 7 | |||
|---|---|---|---|
| used order 7 LS(a) | remarks: | ||
|
LS(2) 0 1 2 3 4 5 6 2 3 4 5 6 0 1 4 5 6 0 1 2 3 6 0 1 2 3 4 5 1 2 3 4 5 6 0 3 4 5 6 0 1 2 5 6 0 1 2 3 4 |
LS(3) 0 1 2 3 4 5 6 3 4 5 6 0 1 2 6 0 1 2 3 4 5 2 3 4 5 6 0 1 5 6 0 1 2 3 4 1 2 3 4 5 6 0 4 5 6 0 1 2 3 |
The below lists squares 7*LS(2)+LS(3)=[perm]+1 the used bimagic permutation, and the bimagic sums which are correct (1) or incorrect (0) along the rows, columns, diagonals and subdiagonals | |
|
square: 2 3 17 01 14 18 26 31 41 44 19 24 34 37 43 07 11 30 36 49 04 12 17 27 46 05 10 20 23 29 42 13 16 22 35 39 47 03 28 32 40 45 06 09 15 38 48 02 08 21 25 33 perm: 0 6 3 4 2 5 1 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 18 01 14 18 27 30 40 45 20 23 33 38 43 07 11 31 36 49 04 13 16 26 46 06 09 19 24 29 42 12 17 22 35 39 48 02 28 32 41 44 05 10 15 37 47 03 08 21 25 34 perm: 0 6 3 5 1 4 2 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 19 01 14 19 24 32 41 44 17 25 34 37 43 07 12 30 36 49 05 10 18 27 47 03 11 20 23 29 42 13 16 22 35 40 45 04 28 33 38 46 06 09 15 39 48 02 08 21 26 31 perm: 0 6 4 2 3 5 1 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 20 01 14 19 24 34 37 46 17 27 30 39 43 07 12 32 36 49 05 10 20 23 47 03 13 16 25 29 42 09 18 22 35 40 45 06 28 33 38 48 02 11 15 41 44 04 08 21 26 31 perm: 0 6 4 2 5 1 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
|
square: 2 3 21 01 14 20 23 32 40 45 16 25 33 38 43 07 13 31 36 49 06 09 18 26 48 02 11 19 24 29 42 12 17 22 35 41 44 04 28 34 37 46 05 10 15 39 47 03 08 21 27 30 perm: 0 6 5 1 3 4 2 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 22 01 14 20 23 33 38 46 16 26 31 39 43 07 13 32 36 49 06 09 19 24 48 02 12 17 25 29 42 10 18 22 35 41 44 05 28 34 37 47 03 11 15 40 45 04 08 21 27 30 perm: 0 6 5 1 4 2 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 38 02 13 17 26 32 42 43 19 25 35 36 44 06 10 29 37 48 03 12 18 28 45 05 11 21 22 30 41 14 15 23 34 38 47 04 27 31 40 46 07 08 16 39 49 01 09 20 24 33 perm: 1 5 2 4 3 6 0 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 39 02 13 17 26 35 36 46 19 28 29 39 44 06 10 32 37 48 03 12 21 22 45 05 14 15 25 30 41 08 18 23 34 38 47 07 27 31 40 49 01 11 16 42 43 04 09 20 24 33 perm: 1 5 2 4 6 0 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
|
square: 2 3 41 02 13 18 24 33 42 43 17 26 35 36 44 06 11 29 37 48 04 10 19 28 46 03 12 21 22 30 41 14 15 23 34 39 45 05 27 32 38 47 07 08 16 40 49 01 09 20 25 31 perm: 1 5 3 2 4 6 0 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 42 02 13 18 28 29 38 47 21 22 31 40 44 06 11 33 37 48 04 14 15 24 46 07 08 17 26 30 41 10 19 23 34 39 49 01 27 32 42 43 03 12 16 36 45 05 09 20 25 35 perm: 1 5 3 6 0 2 4 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 43 02 13 21 22 31 40 46 15 24 33 39 44 06 14 32 37 48 07 08 17 26 49 01 10 19 25 30 41 12 18 23 34 42 43 03 27 35 36 45 05 11 16 38 47 04 09 20 28 29 perm: 1 5 6 0 2 4 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 44 02 13 21 22 32 38 47 15 25 31 40 44 06 14 33 37 48 07 08 18 24 49 01 11 17 26 30 41 10 19 23 34 42 43 04 27 35 36 46 03 12 16 39 45 05 09 20 28 29 perm: 1 5 6 0 3 2 4 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
|
square: 2 3 60 03 12 16 27 32 42 43 20 25 35 36 45 05 09 29 38 47 02 13 18 28 44 06 11 21 22 31 40 14 15 24 33 37 48 04 26 30 41 46 07 08 17 39 49 01 10 19 23 34 perm: 2 4 1 5 3 6 0 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 61 03 12 16 27 35 36 46 20 28 29 39 45 05 09 32 38 47 02 13 21 22 44 06 14 15 25 31 40 08 18 24 33 37 48 07 26 30 41 49 01 11 17 42 43 04 10 19 23 34 perm: 2 4 1 5 6 0 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 62 03 12 18 23 34 42 43 16 27 35 36 45 05 11 29 38 47 04 09 20 28 46 02 13 21 22 31 40 14 15 24 33 39 44 06 26 32 37 48 07 08 17 41 49 01 10 19 25 30 perm: 2 4 3 1 5 6 0 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 63 03 12 18 28 29 37 48 21 22 30 41 45 05 11 34 38 47 04 14 15 23 46 07 08 16 27 31 40 09 20 24 33 39 49 01 26 32 42 43 02 13 17 36 44 06 10 19 25 35 perm: 2 4 3 6 0 1 5 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
|
square: 2 3 65 03 12 21 22 30 41 46 15 23 34 39 45 05 14 32 38 47 07 08 16 27 49 01 09 20 25 31 40 13 18 24 33 42 43 02 26 35 36 44 06 11 17 37 48 04 10 19 28 29 perm: 2 4 6 0 1 5 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 66 03 12 21 22 32 37 48 15 25 30 41 45 05 14 34 38 47 07 08 18 23 49 01 11 16 27 31 40 09 20 24 33 42 43 04 26 35 36 46 02 13 17 39 44 06 10 19 28 29 perm: 2 4 6 0 3 1 5 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 79 04 08 21 26 31 41 44 19 24 34 37 46 01 14 30 39 43 07 12 17 27 49 05 10 20 23 32 36 13 16 25 29 42 47 03 22 35 40 45 06 09 18 38 48 02 11 15 28 33 perm: 3 0 6 4 2 5 1 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 80 04 08 21 27 30 40 45 20 23 33 38 46 01 14 31 39 43 07 13 16 26 49 06 09 19 24 32 36 12 17 25 29 42 48 02 22 35 41 44 05 10 18 37 47 03 11 15 28 34 perm: 3 0 6 5 1 4 2 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
|
square: 2 3 82 04 09 20 24 33 42 43 17 26 35 36 46 02 13 29 39 44 06 10 19 28 48 03 12 21 22 32 37 14 15 25 30 41 45 05 23 34 38 47 07 08 18 40 49 01 11 16 27 31 perm: 3 1 5 2 4 6 0 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 83 04 09 20 28 29 38 47 21 22 31 40 46 02 13 33 39 44 06 14 15 24 48 07 08 17 26 32 37 10 19 25 30 41 49 01 23 34 42 43 03 12 18 36 45 05 11 16 27 35 perm: 3 1 5 6 0 2 4 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 88 04 10 19 23 34 42 43 16 27 35 36 46 03 12 29 39 45 05 09 20 28 47 02 13 21 22 32 38 14 15 25 31 40 44 06 24 33 37 48 07 08 18 41 49 01 11 17 26 30 perm: 3 2 4 1 5 6 0 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 89 04 10 19 28 29 37 48 21 22 30 41 46 03 12 34 39 45 05 14 15 23 47 07 08 16 27 32 38 09 20 25 31 40 49 01 24 33 42 43 02 13 18 36 44 06 11 17 26 35 perm: 3 2 4 6 0 1 5 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
|
square: 2 3 96 04 12 17 22 35 41 44 15 28 34 37 46 05 10 30 39 47 03 08 21 27 45 01 14 20 23 32 40 13 16 25 33 38 43 07 26 31 36 49 06 09 18 42 48 02 11 19 24 29 perm: 3 4 2 0 6 5 1 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 97 04 12 17 27 30 36 49 20 23 29 42 46 05 10 35 39 47 03 13 16 22 45 06 09 15 28 32 40 08 21 25 33 38 48 02 26 31 41 44 01 14 18 37 43 07 11 19 24 34 perm: 3 4 2 5 1 0 6 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 102 04 13 16 22 35 40 45 15 28 33 38 46 06 09 31 39 48 02 08 21 26 44 01 14 19 24 32 41 12 17 25 34 37 43 07 27 30 36 49 05 10 18 42 47 03 11 20 23 29 perm: 3 5 1 0 6 4 2 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 103 04 13 16 26 31 36 49 19 24 29 42 46 06 09 35 39 48 02 12 17 22 44 05 10 15 28 32 41 08 21 25 34 37 47 03 27 30 40 45 01 14 18 38 43 07 11 20 23 33 perm: 3 5 1 4 2 0 6 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
|
square: 2 3 105 04 14 15 23 34 38 47 16 27 31 40 46 07 08 33 39 49 01 09 20 24 43 02 13 17 26 32 42 10 19 25 35 36 44 06 28 29 37 48 03 12 18 41 45 05 11 21 22 30 perm: 3 6 0 1 5 2 4 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 106 04 14 15 24 33 37 48 17 26 30 41 46 07 08 34 39 49 01 10 19 23 43 03 12 16 27 32 42 09 20 25 35 36 45 05 28 29 38 47 02 13 18 40 44 06 11 21 22 31 perm: 3 6 0 2 4 1 5 hor: 1 0 1 0 1 0 0 ver: 1 1 0 1 0 1 0 dia: 1 1 1 1 0 0 0 sub: 1 1 0 0 0 0 1 |
square: 2 3 119 05 10 15 28 32 41 44 21 25 34 37 47 03 08 30 40 45 01 14 18 27 43 07 11 20 23 33 38 13 16 26 31 36 49 04 24 29 42 46 06 09 19 39 48 02 12 17 22 35 perm: 4 2 0 6 3 5 1 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 120 05 10 15 28 34 37 46 21 27 30 39 47 03 08 32 40 45 01 14 20 23 43 07 13 16 25 33 38 09 18 26 31 36 49 06 24 29 42 48 02 11 19 41 44 04 12 17 22 35 perm: 4 2 0 6 5 1 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
|
square: 2 3 122 05 10 18 22 35 41 44 15 28 34 37 47 03 11 30 40 45 04 08 21 27 46 01 14 20 23 33 38 13 16 26 31 39 43 07 24 32 36 49 06 09 19 42 48 02 12 17 25 29 perm: 4 2 3 0 6 5 1 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 123 05 10 18 27 30 36 49 20 23 29 42 47 03 11 35 40 45 04 13 16 22 46 06 09 15 28 33 38 08 21 26 31 39 48 02 24 32 41 44 01 14 19 37 43 07 12 17 25 34 perm: 4 2 3 5 1 0 6 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 124 05 10 20 23 29 42 46 16 22 35 39 47 03 13 32 40 45 06 09 15 28 48 02 08 21 25 33 38 14 18 26 31 41 44 01 24 34 37 43 07 11 19 36 49 04 12 17 27 30 perm: 4 2 5 1 0 6 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 125 05 10 20 23 32 36 49 16 25 29 42 47 03 13 35 40 45 06 09 18 22 48 02 11 15 28 33 38 08 21 26 31 41 44 04 24 34 37 46 01 14 19 39 43 07 12 17 27 30 perm: 4 2 5 1 3 0 6 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
|
square: 2 3 141 06 09 15 28 32 40 45 21 25 33 38 48 02 08 31 41 44 01 14 18 26 43 07 11 19 24 34 37 12 17 27 30 36 49 04 23 29 42 46 05 10 20 39 47 03 13 16 22 35 perm: 5 1 0 6 3 4 2 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 142 06 09 15 28 33 38 46 21 26 31 39 48 02 08 32 41 44 01 14 19 24 43 07 12 17 25 34 37 10 18 27 30 36 49 05 23 29 42 47 03 11 20 40 45 04 13 16 22 35 perm: 5 1 0 6 4 2 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 143 06 09 18 22 35 40 45 15 28 33 38 48 02 11 31 41 44 04 08 21 26 46 01 14 19 24 34 37 12 17 27 30 39 43 07 23 32 36 49 05 10 20 42 47 03 13 16 25 29 perm: 5 1 3 0 6 4 2 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 144 06 09 18 26 31 36 49 19 24 29 42 48 02 11 35 41 44 04 12 17 22 46 05 10 15 28 34 37 08 21 27 30 39 47 03 23 32 40 45 01 14 20 38 43 07 13 16 25 33 perm: 5 1 3 4 2 0 6 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
|
square: 2 3 146 06 09 19 24 29 42 46 17 22 35 39 48 02 12 32 41 44 05 10 15 28 47 03 08 21 25 34 37 14 18 27 30 40 45 01 23 33 38 43 07 11 20 36 49 04 13 16 26 31 perm: 5 1 4 2 0 6 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 147 06 09 19 24 32 36 49 17 25 29 42 48 02 12 35 41 44 05 10 18 22 47 03 11 15 28 34 37 08 21 27 30 40 45 04 23 33 38 46 01 14 20 39 43 07 13 16 26 31 perm: 5 1 4 2 3 0 6 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 163 07 08 16 27 31 40 46 20 24 33 39 49 01 09 32 42 43 02 13 17 26 44 06 10 19 25 35 36 12 18 28 29 37 48 03 22 30 41 45 05 11 21 38 47 04 14 15 23 34 perm: 6 0 1 5 2 4 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 164 07 08 16 27 32 38 47 20 25 31 40 49 01 09 33 42 43 02 13 18 24 44 06 11 17 26 35 36 10 19 28 29 37 48 04 22 30 41 46 03 12 21 39 45 05 14 15 23 34 perm: 6 0 1 5 3 2 4 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
|
square: 2 3 165 07 08 17 26 30 41 46 19 23 34 39 49 01 10 32 42 43 03 12 16 27 45 05 09 20 25 35 36 13 18 28 29 38 47 02 22 31 40 44 06 11 21 37 48 04 14 15 24 33 perm: 6 0 2 4 1 5 3 hor: 0 0 1 0 1 0 1 ver: 1 0 1 0 1 0 1 dia: 0 0 0 1 1 1 1 sub: 1 1 1 0 0 0 0 |
square: 2 3 166 07 08 17 26 32 37 48 19 25 30 41 49 01 10 34 42 43 03 12 18 23 45 05 11 16 27 35 36 09 20 28 29 38 47 04 22 31 40 46 02 13 21 39 44 06 14 15 24 33 perm: 6 0 2 4 3 1 5 hor: 0 1 0 1 0 0 1 ver: 1 0 1 0 1 1 0 dia: 0 0 1 1 1 1 0 sub: 0 0 1 1 1 0 0 |
square: 2 3 167 07 08 18 23 34 38 47 16 27 31 40 49 01 11 33 42 43 04 09 20 24 46 02 13 17 26 35 36 10 19 28 29 39 44 06 22 32 37 48 03 12 21 41 45 05 14 15 25 30 perm: 6 0 3 1 5 2 4 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
square: 2 3 168 07 08 18 24 33 37 48 17 26 30 41 49 01 11 34 42 43 04 10 19 23 46 03 12 16 27 35 36 09 20 28 29 39 45 05 22 32 38 47 02 13 21 40 44 06 14 15 25 31 perm: 6 0 3 2 4 1 5 hor: 1 0 0 1 0 1 0 ver: 1 0 1 1 0 1 0 dia: 0 1 1 1 1 0 0 sub: 0 0 0 0 1 1 1 |
|
LS(3) 0 1 2 3 4 5 6 3 4 5 6 0 1 2 6 0 1 2 3 4 5 2 3 4 5 6 0 1 5 6 0 1 2 3 4 1 2 3 4 5 6 0 4 5 6 0 1 2 3 |
LS(2) 0 1 2 3 4 5 6 2 3 4 5 6 0 1 4 5 6 0 1 2 3 6 0 1 2 3 4 5 1 2 3 4 5 6 0 3 4 5 6 0 1 2 5 6 0 1 2 3 4 |
The below lists squares 7*LS(3)+LS(2)=[perm]+1 the used bimagic permutation, and the bimagic sums which are correct (1) or incorrect (0) along the rows, columns, diagonals and subdiagonals | |
|
square: 3 2 4 01 12 20 25 35 38 44 27 32 42 45 02 08 19 49 03 09 15 26 34 39 16 22 33 41 46 07 10 40 48 04 14 17 23 29 11 21 24 30 36 47 06 31 37 43 05 13 18 28 perm: 0 4 5 3 6 2 1 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 6 01 12 20 28 31 37 46 27 35 38 44 04 08 19 45 02 11 15 26 34 42 18 22 33 41 49 03 09 40 48 07 10 16 25 29 14 17 23 32 36 47 06 30 39 43 05 13 21 24 perm: 0 4 5 6 2 1 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 11 01 13 19 25 35 37 45 26 32 42 44 03 08 20 49 02 10 15 27 33 39 17 22 34 40 46 07 09 41 47 04 14 16 24 29 11 21 23 31 36 48 05 30 38 43 06 12 18 28 perm: 0 5 4 3 6 1 2 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 12 01 13 19 28 30 38 46 26 35 37 45 04 08 20 44 03 11 15 27 33 42 18 22 34 40 49 02 10 41 47 07 09 17 25 29 14 16 24 32 36 48 05 31 39 43 06 12 21 23 perm: 0 5 4 6 1 2 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
|
square: 3 2 27 02 10 21 25 34 40 43 28 32 41 47 01 09 17 48 05 08 16 24 35 39 15 23 31 42 46 06 12 38 49 04 13 19 22 30 11 20 26 29 37 45 07 33 36 44 03 14 18 27 perm: 1 2 6 3 5 4 0 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 29 02 10 21 27 33 36 46 28 34 40 43 04 09 17 47 01 11 16 24 35 41 18 23 31 42 48 05 08 38 49 06 12 15 25 30 13 19 22 32 37 45 07 29 39 44 03 14 20 26 perm: 1 2 6 5 4 0 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 45 02 14 17 25 34 36 47 24 32 41 43 05 09 21 48 01 12 16 28 31 39 19 23 35 38 46 06 08 42 45 04 13 15 26 30 11 20 22 33 37 49 03 29 40 44 07 10 18 27 perm: 1 6 2 3 5 0 4 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 46 02 14 17 27 29 40 46 24 34 36 47 04 09 21 43 05 11 16 28 31 41 18 23 35 38 48 01 12 42 45 06 08 19 25 30 13 15 26 32 37 49 03 33 39 44 07 10 20 22 perm: 1 6 2 5 0 4 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
|
square: 3 2 53 03 09 21 25 33 41 43 28 32 40 48 01 10 16 47 06 08 17 23 35 39 15 24 30 42 46 05 13 37 49 04 12 20 22 31 11 19 27 29 38 44 07 34 36 45 02 14 18 26 perm: 2 1 6 3 4 5 0 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 54 03 09 21 26 34 36 46 28 33 41 43 04 10 16 48 01 11 17 23 35 40 18 24 30 42 47 06 08 37 49 05 13 15 25 31 12 20 22 32 38 44 07 29 39 45 02 14 19 27 perm: 2 1 6 4 5 0 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 72 03 14 16 25 33 36 48 23 32 40 43 06 10 21 47 01 13 17 28 30 39 20 24 35 37 46 05 08 42 44 04 12 15 27 31 11 19 22 34 38 49 02 29 41 45 07 09 18 26 perm: 2 6 1 3 4 0 5 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 73 03 14 16 26 29 41 46 23 33 36 48 04 10 21 43 06 11 17 28 30 40 18 24 35 37 47 01 13 42 44 05 08 20 25 31 12 15 27 32 38 49 02 34 39 45 07 09 19 22 perm: 2 6 1 4 0 5 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
|
square: 3 2 76 04 08 19 27 35 38 44 26 34 42 45 02 11 15 49 03 09 18 22 33 41 16 25 29 40 48 07 10 36 47 06 14 17 23 32 13 21 24 30 39 43 05 31 37 46 01 12 20 28 perm: 3 0 4 5 6 2 1 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 78 04 08 20 26 35 37 45 27 33 42 44 03 11 15 49 02 10 18 22 34 40 17 25 29 41 47 07 09 36 48 05 14 16 24 32 12 21 23 31 39 43 06 30 38 46 01 13 19 28 perm: 3 0 5 4 6 1 2 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 81 04 09 17 28 34 40 43 24 35 41 47 01 11 16 48 05 08 18 23 31 42 15 25 30 38 49 06 12 37 45 07 13 19 22 32 14 20 26 29 39 44 03 33 36 46 02 10 21 27 perm: 3 1 2 6 5 4 0 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 84 04 09 21 24 34 36 47 28 31 41 43 05 11 16 48 01 12 18 23 35 38 19 25 30 42 45 06 08 37 49 03 13 15 26 32 10 20 22 33 39 44 07 29 40 46 02 14 17 27 perm: 3 1 6 2 5 0 4 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
|
square: 3 2 87 04 10 16 28 33 41 43 23 35 40 48 01 11 17 47 06 08 18 24 30 42 15 25 31 37 49 05 13 38 44 07 12 20 22 32 14 19 27 29 39 45 02 34 36 46 03 09 21 26 perm: 3 2 1 6 4 5 0 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 92 04 10 21 23 33 36 48 28 30 40 43 06 11 17 47 01 13 18 24 35 37 20 25 31 42 44 05 08 38 49 02 12 15 26 31 08 18 21 33 38 44 06 29 40 46 03 14 16 26 perm: 3 2 6 1 4 0 5 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 1 0 1 0 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 93 04 12 15 27 31 42 44 22 34 38 49 02 11 19 45 07 09 18 26 29 41 16 25 33 36 48 03 14 40 43 06 10 21 23 32 13 17 28 30 39 47 01 35 37 46 05 08 20 24 perm: 3 4 0 5 2 6 1 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 1 0 1 0 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 98 04 12 20 22 31 37 49 27 29 38 44 07 11 19 45 02 14 18 26 34 36 21 25 33 41 43 03 09 40 48 01 10 16 28 32 08 17 23 35 39 47 06 30 42 46 05 13 15 24 perm: 3 4 5 0 2 1 6 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
|
square: 3 2 101 04 13 15 26 30 42 45 22 33 37 49 03 11 20 44 07 10 18 27 29 40 17 25 34 36 47 02 14 41 43 05 09 21 24 32 12 16 28 31 39 48 01 35 38 46 06 08 19 23 perm: 3 5 0 4 1 6 2 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 104 04 13 19 22 30 38 49 26 29 37 45 07 11 20 44 03 14 18 27 33 36 21 25 34 40 43 02 10 41 47 01 09 17 28 32 08 16 24 35 39 48 05 31 42 46 06 12 15 23 perm: 3 5 4 0 1 2 6 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 107 04 14 16 24 29 41 47 23 31 36 48 05 11 21 43 06 12 18 28 30 38 19 25 35 37 45 01 13 42 44 03 08 20 26 32 10 15 27 33 39 49 02 34 40 46 07 09 17 22 perm: 3 6 1 2 0 5 4 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
square: 3 2 109 04 14 17 23 29 40 48 24 30 36 47 06 11 21 43 05 13 18 28 31 37 20 25 35 38 44 01 12 42 45 02 08 19 27 32 09 15 26 34 39 49 03 33 41 46 07 10 16 22 perm: 3 6 2 1 0 4 5 hor: 1 0 1 1 0 0 1 ver: 1 0 0 1 0 0 1 dia: 1 0 0 1 0 1 0 sub: 0 1 1 0 1 0 1 |
|
square: 3 2 112 05 08 20 24 35 37 46 27 31 42 44 04 12 15 49 02 11 19 22 34 38 18 26 29 41 45 07 09 36 48 03 14 16 25 33 10 21 23 32 40 43 06 30 39 47 01 13 17 28 perm: 4 0 5 2 6 1 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 113 05 08 20 25 31 42 44 27 32 38 49 02 12 15 45 07 09 19 22 34 39 16 26 29 41 46 03 14 36 48 04 10 21 23 33 11 17 28 30 40 43 06 35 37 47 01 13 18 24 perm: 4 0 5 3 2 6 1 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 131 05 13 15 24 30 42 46 22 31 37 49 04 12 20 44 07 11 19 27 29 38 18 26 34 36 45 02 14 41 43 03 09 21 25 33 10 16 28 32 40 48 01 35 39 47 06 08 17 23 perm: 4 5 0 2 1 6 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 132 05 13 15 25 31 37 49 22 32 38 44 07 12 20 45 02 14 19 27 29 39 21 26 34 36 46 03 09 41 43 03 09 21 25 33 11 17 23 34 40 48 01 30 42 47 06 08 18 24 perm: 4 5 0 3 2 1 6 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 0 1 0 1 0 1 sub: 1 0 1 0 1 0 1 |
|
square: 3 2 139 06 08 19 23 35 38 46 26 30 42 45 04 13 15 49 03 11 20 22 33 37 18 27 29 40 44 07 10 36 47 02 14 17 25 34 09 21 24 32 41 43 05 31 39 48 01 12 16 28 perm: 5 0 4 1 6 2 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 140 06 08 19 25 30 42 45 26 32 37 49 03 13 15 44 07 10 20 22 33 39 17 27 29 40 46 02 14 36 47 04 09 21 24 34 11 16 28 31 41 43 05 35 38 48 01 12 18 23 perm: 5 0 4 3 1 6 2 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 156 06 12 15 23 31 42 46 22 30 38 49 04 13 19 45 07 11 20 26 29 37 18 27 33 36 44 03 14 40 43 02 10 21 25 34 09 17 28 32 41 47 01 35 39 48 05 08 16 24 perm: 5 4 0 1 2 6 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 158 06 12 15 25 30 38 49 22 32 37 45 07 13 19 44 03 14 20 26 29 39 21 27 33 36 46 02 10 40 43 04 09 17 28 34 11 16 24 35 41 47 01 31 42 48 05 08 18 23 perm: 5 4 0 3 1 2 6 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
|
square: 3 2 173 07 09 17 22 34 40 46 24 29 41 47 04 14 16 48 05 11 21 23 31 36 18 28 30 38 43 06 12 37 45 01 13 19 25 35 08 20 26 32 42 44 03 33 39 49 02 10 15 27 perm: 6 1 2 0 5 4 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 174 07 09 17 25 29 41 47 24 32 36 48 05 14 16 43 06 12 21 23 31 39 19 28 30 38 46 01 13 37 45 04 08 20 26 35 11 15 27 33 42 44 03 34 40 49 02 10 18 22 perm: 6 1 2 3 0 5 4 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
square: 3 2 179 07 10 16 22 33 41 46 23 29 40 48 04 14 17 47 06 11 21 24 30 36 18 28 31 37 43 05 13 38 44 01 12 20 25 35 08 19 27 32 42 45 02 34 39 49 03 09 15 26 perm: 6 2 1 0 4 5 3 hor: 1 0 0 1 1 0 1 ver: 1 1 0 0 1 0 0 dia: 0 1 0 1 0 0 1 sub: 1 0 1 0 1 0 1 |
square: 3 2 181 07 10 16 25 29 40 48 23 32 36 47 06 14 17 43 05 13 21 24 30 39 20 28 31 37 46 01 12 38 44 04 08 19 27 35 11 15 26 34 42 45 02 33 41 49 03 09 18 22 perm: 6 2 1 3 0 4 5 hor: 0 1 1 0 1 1 0 ver: 1 0 0 1 1 0 0 dia: 0 1 0 1 0 1 0 sub: 1 1 0 1 0 1 0 |
| order 7 bimagic permutations | |||
|---|---|---|---|
|
Full listing of all bimagic permutations for order 7 i=0∑6 (7 * i + perm[i]) = 168 i=0∑6 (7 * i + perm[i])2 = 5432 | |||
|
001: 0 3 5 6 4 2 1 002: 0 3 6 4 5 2 1 003: 0 3 6 5 4 1 2 004: 0 4 5 3 6 2 1 005: 0 4 5 6 1 3 2 006: 0 4 5 6 2 1 3 007: 0 4 6 2 5 3 1 008: 0 4 6 5 1 2 3 009: 0 5 3 4 6 2 1 010: 0 5 3 6 2 4 1 011: 0 5 4 3 6 1 2 012: 0 5 4 6 1 2 3 013: 0 5 6 1 4 3 2 014: 0 5 6 3 2 1 4 015: 0 6 2 4 5 3 1 016: 0 6 2 5 3 4 1 017: 0 6 3 4 2 5 1 018: 0 6 3 5 1 4 2 019: 0 6 4 2 3 5 1 020: 0 6 4 2 5 1 3 021: 0 6 5 1 3 4 2 022: 0 6 5 1 4 2 3 023: 0 6 5 2 3 1 4 024: 0 6 5 3 1 2 4 025: 1 2 4 6 5 3 0 026: 1 2 5 4 6 3 0 027: 1 2 6 3 5 4 0 028: 1 2 6 4 3 5 0 029: 1 2 6 5 4 0 3 030: 1 3 5 2 6 4 0 031: 1 3 5 4 2 6 0 032: 1 3 5 6 0 4 2 033: 1 3 5 6 2 0 4 034: 1 4 2 6 3 5 0 035: 1 4 3 5 2 6 0 036: 1 4 6 0 5 3 2 037: 1 4 6 3 2 0 5 038: 1 5 2 4 3 6 0 039: 1 5 2 4 6 0 3 040: 1 5 2 6 3 0 4 041: 1 5 3 2 4 6 0 042: 1 5 3 6 0 2 4 043: 1 5 6 0 2 4 3 044: 1 5 6 0 3 2 4 045: 1 6 2 3 5 0 4 046: 1 6 2 5 0 4 3 |
047: 1 6 4 0 3 5 2 048: 1 6 4 2 0 5 3 049: 1 6 4 3 0 2 5 050: 1 6 5 0 2 3 4 051: 2 1 4 5 6 3 0 052: 2 1 5 6 4 0 3 053: 2 1 6 3 4 5 0 054: 2 1 6 4 5 0 3 055: 2 3 1 6 5 4 0 056: 2 3 4 1 6 5 0 057: 2 3 4 6 1 0 5 058: 2 3 5 0 6 4 1 059: 2 4 0 6 5 3 1 060: 2 4 1 5 3 6 0 061: 2 4 1 5 6 0 3 062: 2 4 3 1 5 6 0 063: 2 4 3 6 0 1 5 064: 2 4 5 3 1 0 6 065: 2 4 6 0 1 5 3 066: 2 4 6 0 3 1 5 067: 2 5 1 6 0 4 3 068: 2 5 3 0 4 6 1 069: 2 5 3 4 1 0 6 070: 2 5 4 3 0 1 6 071: 2 6 0 5 1 4 3 072: 2 6 1 3 4 0 5 073: 2 6 1 4 0 5 3 074: 2 6 3 0 4 1 5 075: 2 6 4 0 1 3 5 076: 3 0 4 5 6 2 1 077: 3 0 4 6 5 1 2 078: 3 0 5 4 6 1 2 079: 3 0 6 4 2 5 1 080: 3 0 6 5 1 4 2 081: 3 1 2 6 5 4 0 082: 3 1 5 2 4 6 0 083: 3 1 5 6 0 2 4 084: 3 1 6 2 5 0 4 085: 3 1 6 4 2 0 5 086: 3 2 1 5 6 4 0 087: 3 2 1 6 4 5 0 088: 3 2 4 1 5 6 0 089: 3 2 4 6 0 1 5 090: 3 2 5 1 6 0 4 091: 3 2 6 0 5 1 4 092: 3 2 6 1 4 0 5 |
093: 3 4 0 5 2 6 1 094: 3 4 0 6 1 5 2 095: 3 4 1 5 0 6 2 096: 3 4 2 0 6 5 1 097: 3 4 2 5 1 0 6 098: 3 4 5 0 2 1 6 099: 3 4 5 1 0 2 6 100: 3 5 0 2 4 6 1 101: 3 5 0 4 1 6 2 102: 3 5 1 0 6 4 2 103: 3 5 1 4 2 0 6 104: 3 5 4 0 1 2 6 105: 3 6 0 1 5 2 4 106: 3 6 0 2 4 1 5 107: 3 6 1 2 0 5 4 108: 3 6 2 0 1 5 4 109: 3 6 2 1 0 4 5 110: 4 0 2 6 5 3 1 111: 4 0 3 6 2 5 1 112: 4 0 5 2 6 1 3 113: 4 0 5 3 2 6 1 114: 4 0 6 1 5 2 3 115: 4 1 2 3 6 5 0 116: 4 1 3 2 5 6 0 117: 4 1 3 6 2 0 5 118: 4 1 5 0 6 2 3 119: 4 2 0 6 3 5 1 120: 4 2 0 6 5 1 3 121: 4 2 1 3 5 6 0 122: 4 2 3 0 6 5 1 123: 4 2 3 5 1 0 6 124: 4 2 5 1 0 6 3 125: 4 2 5 1 3 0 6 126: 4 2 6 0 1 3 5 127: 4 3 1 6 0 2 5 128: 4 3 2 0 5 6 1 129: 4 3 2 5 0 1 6 130: 4 3 5 0 1 2 6 131: 4 5 0 2 1 6 3 132: 4 5 0 3 2 1 6 133: 4 5 1 0 2 6 3 134: 4 5 2 1 0 3 6 135: 5 0 1 6 4 3 2 136: 5 0 2 3 6 4 1 137: 5 0 2 4 6 1 3 138: 5 0 2 6 3 1 4 |
139: 5 0 4 1 6 2 3 140: 5 0 4 3 1 6 2 141: 5 1 0 6 3 4 2 142: 5 1 0 6 4 2 3 143: 5 1 3 0 6 4 2 144: 5 1 3 4 2 0 6 145: 5 1 4 0 3 6 2 146: 5 1 4 2 0 6 3 147: 5 1 4 2 3 0 6 148: 5 2 0 3 4 6 1 149: 5 2 0 6 1 3 4 150: 5 2 3 1 4 0 6 151: 5 2 4 0 3 1 6 152: 5 3 1 0 4 6 2 153: 5 3 1 0 6 2 4 154: 5 3 1 2 4 0 6 155: 5 3 1 4 0 2 6 156: 5 4 0 1 2 6 3 157: 5 4 0 2 3 1 6 158: 5 4 0 3 1 2 6 159: 5 4 1 2 0 3 6 160; 5 4 2 0 1 3 6 161: 6 0 1 3 5 4 2 162: 6 0 1 4 3 5 2 163: 6 0 1 5 2 4 3 164: 6 0 1 5 3 2 4 165: 6 0 2 4 1 5 3 166: 6 0 2 4 3 1 5 167: 6 0 3 1 5 2 4 168: 6 0 3 2 4 1 5 169: 6 0 4 1 3 2 5 170: 6 0 4 2 1 3 5 171: 6 1 0 3 4 5 2 172: 6 1 0 5 2 3 4 173: 6 1 2 0 5 4 3 174: 6 1 2 3 0 5 4 175: 6 1 3 0 4 2 5 176: 6 1 3 2 0 4 5 177: 6 2 0 1 5 4 3 178: 6 2 0 4 1 3 5 179: 6 2 1 0 4 5 3 180: 6 2 1 0 5 3 4 181: 6 2 1 3 0 4 5 182: 6 3 0 1 2 5 4 183: 6 3 0 2 1 4 5 184: 6 3 1 0 2 4 5 |