| Order08PandiagonalFranklin.html | |||||
|---|---|---|---|---|---|
|
panfranklin 00 15 49 62 16 31 33 46 51 60 02 13 35 44 18 29 14 01 63 48 30 17 47 32 61 50 12 03 45 34 28 19 04 11 53 58 20 27 37 42 55 56 06 09 39 40 22 25 10 05 59 52 26 21 43 36 57 54 08 07 41 38 24 23 |
fourbitperm 0 1 2 3 4 5 0 2 1 3 4 5 0 3 2 1 4 5 0 4 2 3 1 5 0 5 2 3 4 1 |
generators [0,1,2,3,4,5,6,7] [0,1,2,3,4,7,6,5] [0,1,2,3,6,5,4,7] [0,3,2,1,6,7,4,5] [1,2,3,0,5,4,7,6] [1,4,3,6,5,2,7,0] [4,3,6,1,0,7,2,5] |
|||
| {PanFranklin} invariant monagonal permutations generatored by the above 'generators' (at least when applied in mentioned order) |
|||||
|
[0,1,2,3,4,5,6,7] [0,1,2,3,4,7,6,5] [0,1,2,3,6,5,4,7] [0,1,2,3,6,7,4,5] [0,3,2,1,4,5,6,7] [0,3,2,1,4,7,6,5] [0,3,2,1,6,5,4,7] [0,3,2,1,6,7,4,5] [0,5,2,7,4,1,6,3] [0,5,2,7,4,3,6,1] [0,5,2,7,6,1,4,3] [0,5,2,7,6,3,4,1] [0,7,2,5,4,1,6,3] [0,7,2,5,4,3,6,1] [0,7,2,5,6,1,4,3] [0,7,2,5,6,3,4,1] |
[1,0,3,2,5,4,7,6] [1,0,3,2,5,6,7,4] [1,0,3,2,7,4,5,6] [1,0,3,2,7,6,5,4] [1,2,3,0,5,4,7,6] [1,2,3,0,5,6,7,4] [1,2,3,0,7,4,5,6] [1,2,3,0,7,6,5,4] [1,4,3,6,5,0,7,2] [1,4,3,6,5,2,7,0] [1,4,3,6,7,0,5,2] [1,4,3,6,7,2,5,0] [1,6,3,4,5,0,7,2] [1,6,3,4,5,2,7,0] [1,6,3,4,7,0,5,2] [1,6,3,4,7,2,5,0] |
[2,1,0,3,4,5,6,7] [2,1,0,3,4,7,6,5] [2,1,0,3,6,5,4,7] [2,1,0,3,6,7,4,5] [2,3,0,1,4,5,6,7] [2,3,0,1,4,7,6,5] [2,3,0,1,6,5,4,7] [2,3,0,1,6,7,4,5] [2,5,0,7,4,1,6,3] [2,5,0,7,4,3,6,1] [2,5,0,7,6,1,4,3] [2,5,0,7,6,3,4,1] [2,7,0,5,4,1,6,3] [2,7,0,5,4,3,6,1] [2,7,0,5,6,1,4,3] [2,7,0,5,6,3,4,1] |
[3,0,1,2,5,4,7,6] [3,0,1,2,5,6,7,4] [3,0,1,2,7,4,5,6] [3,0,1,2,7,6,5,4] [3,2,1,0,5,4,7,6] [3,2,1,0,5,6,7,4] [3,2,1,0,7,4,5,6] [3,2,1,0,7,6,5,4] [3,4,1,6,5,0,7,2] [3,4,1,6,5,2,7,0] [3,4,1,6,7,0,5,2] [3,4,1,6,7,2,5,0] [3,6,1,4,5,0,7,2] [3,6,1,4,5,2,7,0] [3,6,1,4,7,0,5,2] [3,6,1,4,7,2,5,0] |
||
|
[4,1,6,3,0,5,2,7] [4,1,6,3,0,7,2,5] [4,1,6,3,2,5,0,7] [4,1,6,3,2,7,0,5] [4,3,6,1,0,5,2,7] [4,3,6,1,0,7,2,5] [4,3,6,1,2,5,0,7] [4,3,6,1,2,7,0,5] [4,5,6,7,0,1,2,3] [4,5,6,7,0,3,2,1] [4,5,6,7,2,1,0,3] [4,5,6,7,2,3,0,1] [4,7,6,5,0,1,2,3] [4,7,6,5,0,3,2,1] [4,7,6,5,2,1,0,3] [4,7,6,5,2,3,0,1] |
[5,0,7,2,1,4,3,6] [5,0,7,2,1,6,3,4] [5,0,7,2,3,4,1,6] [5,0,7,2,3,6,1,4] [5,2,7,0,1,4,3,6] [5,2,7,0,1,6,3,4] [5,2,7,0,3,4,1,6] [5,2,7,0,3,6,1,4] [5,4,7,6,1,0,3,2] [5,4,7,6,1,2,3,0] [5,4,7,6,3,0,1,2] [5,4,7,6,3,2,1,0] [5,6,7,4,1,0,3,2] [5,6,7,4,1,2,3,0] [5,6,7,4,3,0,1,2] [5,6,7,4,3,2,1,0] |
[6,1,4,3,0,5,2,7] [6,1,4,3,0,7,2,5] [6,1,4,3,2,5,0,7] [6,1,4,3,2,7,0,5] [6,3,4,1,0,5,2,7] [6,3,4,1,0,7,2,5] [6,3,4,1,2,5,0,7] [6,3,4,1,2,7,0,5] [6,5,4,7,0,1,2,3] [6,5,4,7,0,3,2,1] [6,5,4,7,2,1,0,3] [6,5,4,7,2,3,0,1] [6,7,4,5,0,1,2,3] [6,7,4,5,0,3,2,1] [6,7,4,5,2,1,0,3] [6,7,4,5,2,3,0,1] |
[7,0,5,2,1,4,3,6] [7,0,5,2,1,6,3,4] [7,0,5,2,3,4,1,6] [7,0,5,2,3,6,1,4] [7,2,5,0,1,4,3,6] [7,2,5,0,1,6,3,4] [7,2,5,0,3,4,1,6] [7,2,5,0,3,6,1,4] [7,4,5,6,1,0,3,2] [7,4,5,6,1,2,3,0] [7,4,5,6,3,0,1,2] [7,4,5,6,3,2,1,0] [7,6,5,4,1,0,3,2] [7,6,5,4,1,2,3,0] [7,6,5,4,3,0,1,2] [7,6,5,4,3,2,1,0] |
Binary components DC(33^55,3C^55,55^33,55^3C,55^66,66^55) |
Octary components |
|
33^55 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 |
3C^55 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 |
55^33 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
0 1 6 7 2 3 4 5 6 7 0 1 4 5 2 3 1 0 7 6 3 2 5 4 7 6 1 0 5 4 3 2 0 1 6 7 2 3 4 5 6 7 0 1 4 5 2 3 1 0 7 6 3 2 5 4 7 6 1 0 5 4 3 2 |
||
|
55^3C 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
55^66 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 |
66^55 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 |
0 7 1 6 0 7 1 6 3 4 2 5 3 4 2 5 6 1 7 0 6 1 7 0 5 2 4 3 5 2 4 3 4 3 5 2 4 3 5 2 7 0 6 1 7 0 6 1 2 5 3 4 2 5 3 4 1 6 0 7 1 6 0 7 |
||
| Order08PandiagonalFranklin.html | |||||
|---|---|---|---|---|---|
|
000 panfranklin 00 15 49 62 16 31 33 46 51 60 02 13 35 44 18 29 14 01 63 48 30 17 47 32 61 50 12 03 45 34 28 19 04 11 53 58 20 27 37 42 55 56 06 09 39 40 22 25 10 05 59 52 26 21 43 36 57 54 08 07 41 38 24 23 |
001 panfranklin #[0,1,3,2,4,5] _2[0,1,2,3,4,7,6,5] 00 15 49 62 16 31 33 46 51 60 02 13 35 44 18 29 14 01 63 48 30 17 47 32 61 50 12 03 45 34 28 19 08 07 57 54 24 23 41 38 53 58 04 11 37 42 20 27 06 09 55 56 22 25 39 40 59 52 10 05 43 36 26 21 |
002 panfranklin #[0,1,2,4,3,5] 00 15 49 62 16 31 33 46 53 58 04 11 37 42 20 27 14 01 63 48 30 17 47 32 59 52 10 05 43 36 26 21 02 13 51 60 18 29 35 44 55 56 06 09 39 40 22 25 12 03 61 50 28 19 45 34 57 54 08 07 41 38 24 23 |
003 panfranklin #[1,0,2,3,4,5] _1[0,1,2,3,4,7,6,5] 00 15 49 62 32 30 17 47 51 60 02 13 19 45 34 28 14 01 63 48 46 16 31 33 61 50 12 03 29 35 44 18 04 11 53 58 36 26 21 43 55 56 06 09 23 41 38 24 10 05 59 52 42 20 27 37 57 54 08 07 25 39 40 22 |
004 panfranklin #[1,0,3,2,4,5] _3[0,1,2,3,4,7,6,5] 00 15 49 62 32 30 17 47 51 60 02 13 19 45 34 28 14 01 63 48 46 16 31 33 61 50 12 03 29 35 44 18 08 07 57 54 40 22 25 39 53 58 04 11 21 43 36 26 06 09 55 56 38 24 23 41 59 52 10 05 27 37 42 20 |
005 panfranklin #[1,0,2,4,3,5] _1[0,1,2,3,4,7,6,5] 00 15 49 62 32 30 17 47 53 58 04 11 21 43 36 26 14 01 63 48 46 16 31 33 59 52 10 05 27 37 42 20 02 13 51 60 34 28 19 45 55 56 06 09 23 41 38 24 12 03 61 50 44 18 29 35 57 54 08 07 25 39 40 22 |
|
006 panfranklin #[0,1,2,3,5,4] 00 15 50 61 16 31 34 45 51 60 01 14 35 44 17 30 13 02 63 48 29 18 47 32 62 49 12 03 46 33 28 19 04 11 54 57 20 27 38 41 55 56 05 10 39 40 21 26 09 06 59 52 25 22 43 36 58 53 08 07 42 37 24 23 |
007 panfranklin #[0,1,3,2,5,4] _2[0,1,2,3,4,7,6,5] 00 15 50 61 16 31 34 45 51 60 01 14 35 44 17 30 13 02 63 48 29 18 47 32 62 49 12 03 46 33 28 19 08 07 58 53 24 23 42 37 54 57 04 11 38 41 20 27 05 10 55 56 21 26 39 40 59 52 09 06 43 36 25 22 |
008 panfranklin #[0,1,2,5,3,4] 00 15 50 61 16 31 34 45 54 57 04 11 38 41 20 27 13 02 63 48 29 18 47 32 59 52 09 06 43 36 25 22 01 14 51 60 17 30 35 44 55 56 05 10 39 40 21 26 12 03 62 49 28 19 46 33 58 53 08 07 42 37 24 23 |
009 panfranklin #[1,0,2,3,5,4] _1[0,1,2,3,4,7,6,5] 00 15 50 61 32 29 18 47 51 60 01 14 19 46 33 28 13 02 63 48 45 16 31 34 62 49 12 03 30 35 44 17 04 11 54 57 36 25 22 43 55 56 05 10 23 42 37 24 09 06 59 52 41 20 27 38 58 53 08 07 26 39 40 21 |
010 panfranklin #[1,0,3,2,5,4] _3[0,1,2,3,4,7,6,5] 00 15 50 61 32 29 18 47 51 60 01 14 19 46 33 28 13 02 63 48 45 16 31 34 62 49 12 03 30 35 44 17 08 07 58 53 40 21 26 39 54 57 04 11 22 43 36 25 05 10 55 56 37 24 23 42 59 52 09 06 27 38 41 20 |
011 panfranklin #[1,0,2,5,3,4] _1[0,1,2,3,4,7,6,5] 00 15 50 61 32 29 18 47 54 57 04 11 22 43 36 25 13 02 63 48 45 16 31 34 59 52 09 06 27 38 41 20 01 14 51 60 33 28 19 46 55 56 05 10 23 42 37 24 12 03 62 49 44 17 30 35 58 53 08 07 26 39 40 21 |
|
012 panfranklin #[0,1,2,4,5,3] 00 15 52 59 16 31 36 43 53 58 01 14 37 42 17 30 11 04 63 48 27 20 47 32 62 49 10 05 46 33 26 21 02 13 54 57 18 29 38 41 55 56 03 12 39 40 19 28 09 06 61 50 25 22 45 34 60 51 08 07 44 35 24 23 |
013 panfranklin #[0,1,4,2,5,3] _2[0,1,2,3,4,7,6,5] 00 15 52 59 16 31 36 43 53 58 01 14 37 42 17 30 11 04 63 48 27 20 47 32 62 49 10 05 46 33 26 21 08 07 60 51 24 23 44 35 54 57 02 13 38 41 18 29 03 12 55 56 19 28 39 40 61 50 09 06 45 34 25 22 |
014 panfranklin #[0,1,2,5,4,3] 00 15 52 59 16 31 36 43 54 57 02 13 38 41 18 29 11 04 63 48 27 20 47 32 61 50 09 06 45 34 25 22 01 14 53 58 17 30 37 42 55 56 03 12 39 40 19 28 10 05 62 49 26 21 46 33 60 51 08 07 44 35 24 23 |
015 panfranklin #[1,0,2,4,5,3] _1[0,1,2,3,4,7,6,5] 00 15 52 59 32 27 20 47 53 58 01 14 21 46 33 26 11 04 63 48 43 16 31 36 62 49 10 05 30 37 42 17 02 13 54 57 34 25 22 45 55 56 03 12 23 44 35 24 09 06 61 50 41 18 29 38 60 51 08 07 28 39 40 19 |
016 panfranklin #[1,0,4,2,5,3] _3[0,1,2,3,4,7,6,5] 00 15 52 59 32 27 20 47 53 58 01 14 21 46 33 26 11 04 63 48 43 16 31 36 62 49 10 05 30 37 42 17 08 07 60 51 40 19 28 39 54 57 02 13 22 45 34 25 03 12 55 56 35 24 23 44 61 50 09 06 29 38 41 18 |
017 panfranklin #[1,0,2,5,4,3] _1[0,1,2,3,4,7,6,5] 00 15 52 59 32 27 20 47 54 57 02 13 22 45 34 25 11 04 63 48 43 16 31 36 61 50 09 06 29 38 41 18 01 14 53 58 33 26 21 46 55 56 03 12 23 44 35 24 10 05 62 49 42 17 30 37 60 51 08 07 28 39 40 19 |
|
018 panfranklin #[0,1,3,4,5,2] 00 15 56 55 16 31 40 39 57 54 01 14 41 38 17 30 07 08 63 48 23 24 47 32 62 49 06 09 46 33 22 25 02 13 58 53 18 29 42 37 59 52 03 12 43 36 19 28 05 10 61 50 21 26 45 34 60 51 04 11 44 35 20 27 |
019 panfranklin #[0,1,4,3,5,2] _2[0,1,2,3,4,7,6,5] 00 15 56 55 16 31 40 39 57 54 01 14 41 38 17 30 07 08 63 48 23 24 47 32 62 49 06 09 46 33 22 25 04 11 60 51 20 27 44 35 58 53 02 13 42 37 18 29 03 12 59 52 19 28 43 36 61 50 05 10 45 34 21 26 |
020 panfranklin #[0,1,3,5,4,2] 00 15 56 55 16 31 40 39 58 53 02 13 42 37 18 29 07 08 63 48 23 24 47 32 61 50 05 10 45 34 21 26 01 14 57 54 17 30 41 38 59 52 03 12 43 36 19 28 06 09 62 49 22 25 46 33 60 51 04 11 44 35 20 27 |
021 panfranklin #[1,0,3,4,5,2] _1[0,1,2,3,4,7,6,5] 00 15 56 55 32 23 24 47 57 54 01 14 25 46 33 22 07 08 63 48 39 16 31 40 62 49 06 09 30 41 38 17 02 13 58 53 34 21 26 45 59 52 03 12 27 44 35 20 05 10 61 50 37 18 29 42 60 51 04 11 28 43 36 19 |
022 panfranklin #[1,0,4,3,5,2] _3[0,1,2,3,4,7,6,5] 00 15 56 55 32 23 24 47 57 54 01 14 25 46 33 22 07 08 63 48 39 16 31 40 62 49 06 09 30 41 38 17 04 11 60 51 36 19 28 43 58 53 02 13 26 45 34 21 03 12 59 52 35 20 27 44 61 50 05 10 29 42 37 18 |
023 panfranklin #[1,0,3,5,4,2] _1[0,1,2,3,4,7,6,5] 00 15 56 55 32 23 24 47 58 53 02 13 26 45 34 21 07 08 63 48 39 16 31 40 61 50 05 10 29 42 37 18 01 14 57 54 33 22 25 46 59 52 03 12 27 44 35 20 06 09 62 49 38 17 30 41 60 51 04 11 28 43 36 19 |
|
024 panfranklin #[0,2,1,3,4,5] 00 23 41 62 08 31 33 54 43 60 02 21 35 52 10 29 22 01 63 40 30 09 55 32 61 42 20 03 53 34 28 11 04 19 45 58 12 27 37 50 47 56 06 17 39 48 14 25 18 05 59 44 26 13 51 36 57 46 16 07 49 38 24 15 |
025 panfranklin #[0,2,3,1,4,5] _2[0,1,2,3,4,7,6,5] 00 23 41 62 08 31 33 54 43 60 02 21 35 52 10 29 22 01 63 40 30 09 55 32 61 42 20 03 53 34 28 11 16 07 57 46 24 15 49 38 45 58 04 19 37 50 12 27 06 17 47 56 14 25 39 48 59 44 18 05 51 36 26 13 |
026 panfranklin #[0,2,1,4,3,5] 00 23 41 62 08 31 33 54 45 58 04 19 37 50 12 27 22 01 63 40 30 09 55 32 59 44 18 05 51 36 26 13 02 21 43 60 10 29 35 52 47 56 06 17 39 48 14 25 20 03 61 42 28 11 53 34 57 46 16 07 49 38 24 15 |
027 panfranklin #[1,3,2,0,5,4] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 41 62 32 30 09 55 43 60 02 21 11 53 34 28 22 01 63 40 54 08 31 33 61 42 20 03 29 35 52 10 04 19 45 58 36 26 13 51 47 56 06 17 15 49 38 24 18 05 59 44 50 12 27 37 57 46 16 07 25 39 48 14 |
028 panfranklin #[2,0,3,1,4,5] _3[0,1,2,3,4,7,6,5] 00 23 41 62 32 30 09 55 43 60 02 21 11 53 34 28 22 01 63 40 54 08 31 33 61 42 20 03 29 35 52 10 16 07 57 46 48 14 25 39 45 58 04 19 13 51 36 26 06 17 47 56 38 24 15 49 59 44 18 05 27 37 50 12 |
029 panfranklin #[1,4,2,0,5,3] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 41 62 32 30 09 55 45 58 04 19 13 51 36 26 22 01 63 40 54 08 31 33 59 44 18 05 27 37 50 12 02 21 43 60 34 28 11 53 47 56 06 17 15 49 38 24 20 03 61 42 52 10 29 35 57 46 16 07 25 39 48 14 |
|
030 panfranklin #[0,2,1,3,5,4] 00 23 42 61 08 31 34 53 43 60 01 22 35 52 09 30 21 02 63 40 29 10 55 32 62 41 20 03 54 33 28 11 04 19 46 57 12 27 38 49 47 56 05 18 39 48 13 26 17 06 59 44 25 14 51 36 58 45 16 07 50 37 24 15 |
031 panfranklin #[0,2,3,1,5,4] _2[0,1,2,3,4,7,6,5] 00 23 42 61 08 31 34 53 43 60 01 22 35 52 09 30 21 02 63 40 29 10 55 32 62 41 20 03 54 33 28 11 16 07 58 45 24 15 50 37 46 57 04 19 38 49 12 27 05 18 47 56 13 26 39 48 59 44 17 06 51 36 25 14 |
032 panfranklin #[0,2,1,5,3,4] 00 23 42 61 08 31 34 53 46 57 04 19 38 49 12 27 21 02 63 40 29 10 55 32 59 44 17 06 51 36 25 14 01 22 43 60 09 30 35 52 47 56 05 18 39 48 13 26 20 03 62 41 28 11 54 33 58 45 16 07 50 37 24 15 |
033 panfranklin #[1,3,2,0,4,5] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 42 61 32 29 10 55 43 60 01 22 11 54 33 28 21 02 63 40 53 08 31 34 62 41 20 03 30 35 52 09 04 19 46 57 36 25 14 51 47 56 05 18 15 50 37 24 17 06 59 44 49 12 27 38 58 45 16 07 26 39 48 13 |
034 panfranklin #[2,0,3,1,5,4] _3[0,1,2,3,4,7,6,5] 00 23 42 61 32 29 10 55 43 60 01 22 11 54 33 28 21 02 63 40 53 08 31 34 62 41 20 03 30 35 52 09 16 07 58 45 48 13 26 39 46 57 04 19 14 51 36 25 05 18 47 56 37 24 15 50 59 44 17 06 27 38 49 12 |
035 panfranklin #[1,5,2,0,4,3] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 42 61 32 29 10 55 46 57 04 19 14 51 36 25 21 02 63 40 53 08 31 34 59 44 17 06 27 38 49 12 01 22 43 60 33 28 11 54 47 56 05 18 15 50 37 24 20 03 62 41 52 09 30 35 58 45 16 07 26 39 48 13 |
|
036 panfranklin #[0,2,1,4,5,3] 00 23 44 59 08 31 36 51 45 58 01 22 37 50 09 30 19 04 63 40 27 12 55 32 62 41 18 05 54 33 26 13 02 21 46 57 10 29 38 49 47 56 03 20 39 48 11 28 17 06 61 42 25 14 53 34 60 43 16 07 52 35 24 15 |
037 panfranklin #[0,2,4,1,5,3] _2[0,1,2,3,4,7,6,5] 00 23 44 59 08 31 36 51 45 58 01 22 37 50 09 30 19 04 63 40 27 12 55 32 62 41 18 05 54 33 26 13 16 07 60 43 24 15 52 35 46 57 02 21 38 49 10 29 03 20 47 56 11 28 39 48 61 42 17 06 53 34 25 14 |
038 panfranklin #[0,2,1,5,4,3] 00 23 44 59 08 31 36 51 46 57 02 21 38 49 10 29 19 04 63 40 27 12 55 32 61 42 17 06 53 34 25 14 01 22 45 58 09 30 37 50 47 56 03 20 39 48 11 28 18 05 62 41 26 13 54 33 60 43 16 07 52 35 24 15 |
039 panfranklin #[1,4,2,0,3,5] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 44 59 32 27 12 55 45 58 01 22 13 54 33 26 19 04 63 40 51 08 31 36 62 41 18 05 30 37 50 09 02 21 46 57 34 25 14 53 47 56 03 20 15 52 35 24 17 06 61 42 49 10 29 38 60 43 16 07 28 39 48 11 |
040 panfranklin #[2,0,4,1,5,3] _3[0,1,2,3,4,7,6,5] 00 23 44 59 32 27 12 55 45 58 01 22 13 54 33 26 19 04 63 40 51 08 31 36 62 41 18 05 30 37 50 09 16 07 60 43 48 11 28 39 46 57 02 21 14 53 34 25 03 20 47 56 35 24 15 52 61 42 17 06 29 38 49 10 |
041 panfranklin #[1,5,2,0,3,4] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 23 44 59 32 27 12 55 46 57 02 21 14 53 34 25 19 04 63 40 51 08 31 36 61 42 17 06 29 38 49 10 01 22 45 58 33 26 13 54 47 56 03 20 15 52 35 24 18 05 62 41 50 09 30 37 60 43 16 07 28 39 48 11 |
|
042 panfranklin #[0,2,3,4,5,1] 00 23 56 47 08 31 48 39 57 46 01 22 49 38 09 30 07 16 63 40 15 24 55 32 62 41 06 17 54 33 14 25 02 21 58 45 10 29 50 37 59 44 03 20 51 36 11 28 05 18 61 42 13 26 53 34 60 43 04 19 52 35 12 27 |
043 panfranklin #[0,2,4,3,5,1] _2[0,1,2,3,4,7,6,5] 00 23 56 47 08 31 48 39 57 46 01 22 49 38 09 30 07 16 63 40 15 24 55 32 62 41 06 17 54 33 14 25 04 19 60 43 12 27 52 35 58 45 02 21 50 37 10 29 03 20 59 44 11 28 51 36 61 42 05 18 53 34 13 26 |
044 panfranklin #[0,2,3,5,4,1] 00 23 56 47 08 31 48 39 58 45 02 21 50 37 10 29 07 16 63 40 15 24 55 32 61 42 05 18 53 34 13 26 01 22 57 46 09 30 49 38 59 44 03 20 51 36 11 28 06 17 62 41 14 25 54 33 60 43 04 19 52 35 12 27 |
045 panfranklin #[0,3,1,2,4,5] 00 27 37 62 04 31 33 58 39 60 02 25 35 56 06 29 26 01 63 36 30 05 59 32 61 38 24 03 57 34 28 07 08 19 45 54 12 23 41 50 47 52 10 17 43 48 14 21 18 09 55 44 22 13 51 40 53 46 16 11 49 42 20 15 |
046 panfranklin #[0,3,2,1,4,5] _2[0,1,2,3,4,7,6,5] 00 27 37 62 04 31 33 58 39 60 02 25 35 56 06 29 26 01 63 36 30 05 59 32 61 38 24 03 57 34 28 07 16 11 53 46 20 15 49 42 45 54 08 19 41 50 12 23 10 17 47 52 14 21 43 48 55 44 18 09 51 40 22 13 |
047 panfranklin #[0,3,1,4,2,5] 00 27 37 62 04 31 33 58 45 54 08 19 41 50 12 23 26 01 63 36 30 05 59 32 55 44 18 09 51 40 22 13 02 25 39 60 06 29 35 56 47 52 10 17 43 48 14 21 24 03 61 38 28 07 57 34 53 46 16 11 49 42 20 15 |
|
048 panfranklin #[1,2,3,0,5,4] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 27 37 62 32 30 05 59 39 60 02 25 07 57 34 28 26 01 63 36 58 04 31 33 61 38 24 03 29 35 56 06 08 19 45 54 40 22 13 51 47 52 10 17 15 49 42 20 18 09 55 44 50 12 23 41 53 46 16 11 21 43 48 14 |
049 panfranklin #[2,1,3,0,5,4] ^[1,0] _3[0,1,2,3,4,7,6,5] 00 27 37 62 32 30 05 59 39 60 02 25 07 57 34 28 26 01 63 36 58 04 31 33 61 38 24 03 29 35 56 06 16 11 53 46 48 14 21 43 45 54 08 19 13 51 40 22 10 17 47 52 42 20 15 49 55 44 18 09 23 41 50 12 |
050 panfranklin #[1,4,3,0,5,2] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 27 37 62 32 30 05 59 45 54 08 19 13 51 40 22 26 01 63 36 58 04 31 33 55 44 18 09 23 41 50 12 02 25 39 60 34 28 07 57 47 52 10 17 15 49 42 20 24 03 61 38 56 06 29 35 53 46 16 11 21 43 48 14 |
051 panfranklin #[0,3,1,2,5,4] 00 27 38 61 04 31 34 57 39 60 01 26 35 56 05 30 25 02 63 36 29 06 59 32 62 37 24 03 58 33 28 07 08 19 46 53 12 23 42 49 47 52 09 18 43 48 13 22 17 10 55 44 21 14 51 40 54 45 16 11 50 41 20 15 |
052 panfranklin #[0,3,2,1,5,4] _2[0,1,2,3,4,7,6,5] 00 27 38 61 04 31 34 57 39 60 01 26 35 56 05 30 25 02 63 36 29 06 59 32 62 37 24 03 58 33 28 07 16 11 54 45 20 15 50 41 46 53 08 19 42 49 12 23 09 18 47 52 13 22 43 48 55 44 17 10 51 40 21 14 |
053 panfranklin #[0,3,1,5,2,4] 00 27 38 61 04 31 34 57 46 53 08 19 42 49 12 23 25 02 63 36 29 06 59 32 55 44 17 10 51 40 21 14 01 26 39 60 05 30 35 56 47 52 09 18 43 48 13 22 24 03 62 37 28 07 58 33 54 45 16 11 50 41 20 15 |
|
054 panfranklin #[1,2,3,0,4,5] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 27 38 61 32 29 06 59 39 60 01 26 07 58 33 28 25 02 63 36 57 04 31 34 62 37 24 03 30 35 56 05 08 19 46 53 40 21 14 51 47 52 09 18 15 50 41 20 17 10 55 44 49 12 23 42 54 45 16 11 22 43 48 13 |
055 panfranklin #[2,1,3,0,4,5] ^[1,0] _3[0,1,2,3,4,7,6,5] 00 27 38 61 32 29 06 59 39 60 01 26 07 58 33 28 25 02 63 36 57 04 31 34 62 37 24 03 30 35 56 05 16 11 54 45 48 13 22 43 46 53 08 19 14 51 40 21 09 18 47 52 41 20 15 50 55 44 17 10 23 42 49 12 |
056 panfranklin #[1,5,3,0,4,2] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 27 38 61 32 29 06 59 46 53 08 19 14 51 40 21 25 02 63 36 57 04 31 34 55 44 17 10 23 42 49 12 01 26 39 60 33 28 07 58 47 52 09 18 15 50 41 20 24 03 62 37 56 05 30 35 54 45 16 11 22 43 48 13 |
057 panfranklin #[0,3,1,4,5,2] 00 27 44 55 04 31 40 51 45 54 01 26 41 50 05 30 19 08 63 36 23 12 59 32 62 37 18 09 58 33 22 13 02 25 46 53 06 29 42 49 47 52 03 24 43 48 07 28 17 10 61 38 21 14 57 34 60 39 16 11 56 35 20 15 |
058 panfranklin #[0,3,4,1,5,2] _2[0,1,2,3,4,7,6,5] 00 27 44 55 04 31 40 51 45 54 01 26 41 50 05 30 19 08 63 36 23 12 59 32 62 37 18 09 58 33 22 13 16 11 60 39 20 15 56 35 46 53 02 25 42 49 06 29 03 24 47 52 07 28 43 48 61 38 17 10 57 34 21 14 |
059 panfranklin #[0,3,1,5,4,2] 00 27 44 55 04 31 40 51 46 53 02 25 42 49 06 29 19 08 63 36 23 12 59 32 61 38 17 10 57 34 21 14 01 26 45 54 05 30 41 50 47 52 03 24 43 48 07 28 18 09 62 37 22 13 58 33 60 39 16 11 56 35 20 15 |
|
060 panfranklin #[0,3,2,4,5,1] 00 27 52 47 04 31 48 43 53 46 01 26 49 42 05 30 11 16 63 36 15 20 59 32 62 37 10 17 58 33 14 21 02 25 54 45 06 29 50 41 55 44 03 24 51 40 07 28 09 18 61 38 13 22 57 34 60 39 08 19 56 35 12 23 |
061 panfranklin #[0,3,4,2,5,1] _2[0,1,2,3,4,7,6,5] 00 27 52 47 04 31 48 43 53 46 01 26 49 42 05 30 11 16 63 36 15 20 59 32 62 37 10 17 58 33 14 21 08 19 60 39 12 23 56 35 54 45 02 25 50 41 06 29 03 24 55 44 07 28 51 40 61 38 09 18 57 34 13 22 |
062 panfranklin #[0,3,2,5,4,1] 00 27 52 47 04 31 48 43 54 45 02 25 50 41 06 29 11 16 63 36 15 20 59 32 61 38 09 18 57 34 13 22 01 26 53 46 05 30 49 42 55 44 03 24 51 40 07 28 10 17 62 37 14 21 58 33 60 39 08 19 56 35 12 23 |
063 panfranklin #[0,4,1,2,3,5] 00 29 35 62 02 31 33 60 39 58 04 25 37 56 06 27 28 01 63 34 30 03 61 32 59 38 24 05 57 36 26 07 08 21 43 54 10 23 41 52 47 50 12 17 45 48 14 19 20 09 55 42 22 11 53 40 51 46 16 13 49 44 18 15 |
064 panfranklin #[0,4,2,1,3,5] _2[0,1,2,3,4,7,6,5] 00 29 35 62 02 31 33 60 39 58 04 25 37 56 06 27 28 01 63 34 30 03 61 32 59 38 24 05 57 36 26 07 16 13 51 46 18 15 49 44 43 54 08 21 41 52 10 23 12 17 47 50 14 19 45 48 55 42 20 09 53 40 22 11 |
065 panfranklin #[0,4,1,3,2,5] 00 29 35 62 02 31 33 60 43 54 08 21 41 52 10 23 28 01 63 34 30 03 61 32 55 42 20 09 53 40 22 11 04 25 39 58 06 27 37 56 47 50 12 17 45 48 14 19 24 05 59 38 26 07 57 36 51 46 16 13 49 44 18 15 |
|
066 panfranklin #[1,2,4,0,5,3] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 29 35 62 32 30 03 61 39 58 04 25 07 57 36 26 28 01 63 34 60 02 31 33 59 38 24 05 27 37 56 06 08 21 43 54 40 22 11 53 47 50 12 17 15 49 44 18 20 09 55 42 52 10 23 41 51 46 16 13 19 45 48 14 |
067 panfranklin #[2,1,4,0,5,3] ^[1,0] _3[0,1,2,3,4,7,6,5] 00 29 35 62 32 30 03 61 39 58 04 25 07 57 36 26 28 01 63 34 60 02 31 33 59 38 24 05 27 37 56 06 16 13 51 46 48 14 19 45 43 54 08 21 11 53 40 22 12 17 47 50 44 18 15 49 55 42 20 09 23 41 52 10 |
068 panfranklin #[1,3,4,0,5,2] ^[1,0] _1[0,1,2,3,4,7,6,5] 00 29 35 62 32 30 03 61 43 54 08 21 11 53 40 22 28 01 63 34 60 02 31 33 55 42 20 09 23 41 52 10 04 25 39 58 36 26 07 57 47 50 12 17 15 49 44 18 24 05 59 38 56 06 27 37 51 46 16 13 19 45 48 14 |
069 panfranklin #[0,4,1,2,5,3] 00 29 38 59 02 31 36 57 39 58 01 28 37 56 03 30 25 04 63 34 27 06 61 32 62 35 24 05 60 33 26 07 08 21 46 51 10 23 44 49 47 50 09 20 45 48 11 22 17 12 55 42 19 14 53 40 54 43 16 13 52 41 18 15 |
070 panfranklin #[0,4,2,1,5,3] _2[0,1,2,3,4,7,6,5] 00 29 38 59 02 31 36 57 39 58 01 28 37 56 03 30 25 04 63 34 27 06 61 32 62 35 24 05 60 33 26 07 16 13 54 43 18 15 52 41 46 51 08 21 44 49 10 23 09 20 47 50 11 22 45 48 55 42 17 12 53 40 19 14 |
071 panfranklin #[0,4,1,5,2,3] 00 29 38 59 02 31 36 57 46 51 08 21 44 49 10 23 25 04 63 34 27 06 61 32 55 42 17 12 53 40 19 14 01 28 39 58 03 30 37 56 47 50 09 20 45 48 11 22 24 05 62 35 26 07 60 33 54 43 16 13 52 41 18 15 |
|
072 panfranklin #[0,4,1,3,5,2] 00 29 42 55 02 31 40 53 43 54 01 28 41 52 03 30 21 08 63 34 23 10 61 32 62 35 20 09 60 33 22 11 04 25 46 51 06 27 44 49 47 50 05 24 45 48 07 26 17 12 59 38 19 14 57 36 58 39 16 13 56 37 18 15 |
073 panfranklin #[0,4,3,1,5,2] _2[0,1,2,3,4,7,6,5] 00 29 42 55 02 31 40 53 43 54 01 28 41 52 03 30 21 08 63 34 23 10 61 32 62 35 20 09 60 33 22 11 16 13 58 39 18 15 56 37 46 51 04 25 44 49 06 27 05 24 47 50 07 26 45 48 59 38 17 12 57 36 19 14 |
074 panfranklin #[0,4,1,5,3,2] 00 29 42 55 02 31 40 53 46 51 04 25 44 49 06 27 21 08 63 34 23 10 61 32 59 38 17 12 57 36 19 14 01 28 43 54 03 30 41 52 47 50 05 24 45 48 07 26 20 09 62 35 22 11 60 33 58 39 16 13 56 37 18 15 |
075 panfranklin #[0,4,2,3,5,1] 00 29 50 47 02 31 48 45 51 46 01 28 49 44 03 30 13 16 63 34 15 18 61 32 62 35 12 17 60 33 14 19 04 25 54 43 06 27 52 41 55 42 05 24 53 40 07 26 09 20 59 38 11 22 57 36 58 39 08 21 56 37 10 23 |
076 panfranklin #[0,4,3,2,5,1] _2[0,1,2,3,4,7,6,5] 00 29 50 47 02 31 48 45 51 46 01 28 49 44 03 30 13 16 63 34 15 18 61 32 62 35 12 17 60 33 14 19 08 21 58 39 10 23 56 37 54 43 04 25 52 41 06 27 05 24 55 42 07 26 53 40 59 38 09 20 57 36 11 22 |
077 panfranklin #[0,4,2,5,3,1] 00 29 50 47 02 31 48 45 54 43 04 25 52 41 06 27 13 16 63 34 15 18 61 32 59 38 09 20 57 36 11 22 01 28 51 46 03 30 49 44 55 42 05 24 53 40 07 26 12 17 62 35 14 19 60 33 58 39 08 21 56 37 10 23 |
|
078 panfranklin #[0,5,1,2,3,4] 00 30 35 61 01 31 34 60 39 57 04 26 38 56 05 27 28 02 63 33 29 03 62 32 59 37 24 06 58 36 25 07 08 22 43 53 09 23 42 52 47 49 12 18 46 48 13 19 20 10 55 41 21 11 54 40 51 45 16 14 50 44 17 15 |
079 panfranklin #[0,5,2,1,3,4] _2[0,1,2,3,4,7,6,5] 00 30 35 61 01 31 34 60 39 57 04 26 38 56 05 27 28 02 63 33 29 03 62 32 59 37 24 06 58 36 25 07 16 14 51 45 17 15 50 44 43 53 08 22 42 52 09 23 12 18 47 49 13 19 46 48 55 41 20 10 54 40 21 11 |
080 panfranklin #[0,5,1,3,2,4] 00 30 35 61 01 31 34 60 43 53 08 22 42 52 09 23 28 02 63 33 29 03 62 32 55 41 20 10 54 40 21 11 04 26 39 57 05 27 38 56 47 49 12 18 46 48 13 19 24 06 59 37 25 07 58 36 51 45 16 14 50 44 17 15 |
081 panfranklin #[0,5,1,2,4,3] 00 30 37 59 01 31 36 58 39 57 02 28 38 56 03 29 26 04 63 33 27 05 62 32 61 35 24 06 60 34 25 07 08 22 45 51 09 23 44 50 47 49 10 20 46 48 11 21 18 12 55 41 19 13 54 40 53 43 16 14 52 42 17 15 |
082 panfranklin #[0,5,2,1,4,3] _2[0,1,2,3,4,7,6,5] 00 30 37 59 01 31 36 58 39 57 02 28 38 56 03 29 26 04 63 33 27 05 62 32 61 35 24 06 60 34 25 07 16 14 53 43 17 15 52 42 45 51 08 22 44 50 09 23 10 20 47 49 11 21 46 48 55 41 18 12 54 40 19 13 |
083 panfranklin #[0,5,1,4,2,3] 00 30 37 59 01 31 36 58 45 51 08 22 44 50 09 23 26 04 63 33 27 05 62 32 55 41 18 12 54 40 19 13 02 28 39 57 03 29 38 56 47 49 10 20 46 48 11 21 24 06 61 35 25 07 60 34 53 43 16 14 52 42 17 15 |
|
084 panfranklin #[0,5,1,3,4,2] 00 30 41 55 01 31 40 54 43 53 02 28 42 52 03 29 22 08 63 33 23 09 62 32 61 35 20 10 60 34 21 11 04 26 45 51 05 27 44 50 47 49 06 24 46 48 07 25 18 12 59 37 19 13 58 36 57 39 16 14 56 38 17 15 |
085 panfranklin #[0,5,3,1,4,2] _2[0,1,2,3,4,7,6,5] 00 30 41 55 01 31 40 54 43 53 02 28 42 52 03 29 22 08 63 33 23 09 62 32 61 35 20 10 60 34 21 11 16 14 57 39 17 15 56 38 45 51 04 26 44 50 05 27 06 24 47 49 07 25 46 48 59 37 18 12 58 36 19 13 |
086 panfranklin #[0,5,1,4,3,2] 00 30 41 55 01 31 40 54 45 51 04 26 44 50 05 27 22 08 63 33 23 09 62 32 59 37 18 12 58 36 19 13 02 28 43 53 03 29 42 52 47 49 06 24 46 48 07 25 20 10 61 35 21 11 60 34 57 39 16 14 56 38 17 15 |
087 panfranklin #[0,5,2,3,4,1] 00 30 49 47 01 31 48 46 51 45 02 28 50 44 03 29 14 16 63 33 15 17 62 32 61 35 12 18 60 34 13 19 04 26 53 43 05 27 52 42 55 41 06 24 54 40 07 25 10 20 59 37 11 21 58 36 57 39 08 22 56 38 09 23 |
088 panfranklin #[0,5,3,2,4,1] _2[0,1,2,3,4,7,6,5] 00 30 49 47 01 31 48 46 51 45 02 28 50 44 03 29 14 16 63 33 15 17 62 32 61 35 12 18 60 34 13 19 08 22 57 39 09 23 56 38 53 43 04 26 52 42 05 27 06 24 55 41 07 25 54 40 59 37 10 20 58 36 11 21 |
089 panfranklin #[0,5,2,4,3,1] 00 30 49 47 01 31 48 46 53 43 04 26 52 42 05 27 14 16 63 33 15 17 62 32 59 37 10 20 58 36 11 21 02 28 51 45 03 29 50 44 55 41 06 24 54 40 07 25 12 18 61 35 13 19 60 34 57 39 08 22 56 38 09 23 |